

© 2015 Published by “Petru Maior” University Press. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

46

Scientific Bulletin of the “Petru Maior” University of Tîrgu Mureş

Vol. 12 (XXIX) no. 2, 2015

ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM)

INTEGRITY CONSTRAINTS FOR THE DATA-ORIENTED DESIGN

OF THE USER INTERFACES

Marius MUJI
“Petru Maior” University of Tîrgu Mureş

Nicolae Iorga Street, no. 1, 540088 Tîrgu Mureş, Romania
marius_muji@yahoo.com

Abstract

Declarative development of the presentation level of database-driven information systems

was always a main goal for the development technologies. However, it is just partially

attained, for a limited set of design patterns, while the general approaches still rely on

procedural code. This paper formally defines a set of integrity constraints, as part of a

presentation-purpose logical data model. The automatic enforcement of the respective

integrity constraints constitutes the declarative support for any implementation technology

of the proposed presentation model.

Key words: Logical design, data models, declarative specifications

1. Introduction

Database-driven information systems architecture

has traditionally two different logical layers [1] [2]:

one that holds all the specific user perspectives (user

views – UV) on the information system, the other that

integrates all those particular perceptions about the

“universe of discourse” [3] into one community view

(CV).

Since it holds the unified representation of the

system’s persistent data, the community view was

historically developed by database professionals,

being based on strong theoretical grounds. In order to

gain physical data independence, the community view

was split into a conceptual level and a

physical/internal level. The most important

theoretical contribution that facilitated the

development of a class of technologies capable to

implement these architectural levels is the relational

model [4] [5] [6]. The fact that the great majority of

the current database management systems (DBMSs)

rely on its mathematical definition ensures a high

degree of physical data independence, facilitating

data portability, and, not least, a common mindset for

the database professionals. Moreover, an important

part of the community view can be expressed

declaratively, through the essential data structure of

the relational model (i.e., the relation), a set of

integrity constraints (e.g., primary keys, foreign

keys), and a set of mathematical operators known as

the “relational algebra” [2] [7].

On the other hand, the user views of the system

are built using numerous development technologies,

from general-purpose languages (e.g., C, Java) to

domain specific languages (DSLs) [8] [9] and front

end development frameworks, like Microsoft .Net

[10], Oracle Application Development Framework

[11], Eclipse [12], and many others. Although they

strive to provide a high level of abstraction, through

declarative facilities and object oriented features,

these technologies are not able to ensure the same

level of data independence as the relational DBMSs,

since they are not built around a logical data model

with a mathematical definition. Consequently, at

some point of the system’s development, the

programmers still have to write procedural code, in

order to implement all the “presentation rules” [13]

expected by the business user.

The main purpose of our paper is to extend the

formal definition of a presentation-purpose logical

data model [14] [15], through a set of integrity

constraints. The proposed constraints will provide the

theoretical ground for the declarative specification of

the presentation component of the system.

Section 2 discusses similar approaches; Section 3

contains a brief presentation of the considered data

model, in terms of data structures and logical

operators; Section 4 provides the formal definitions of

the proposed integrity constraints, and Section 5

concludes with considerations about the scope of the

presentation model.

2. Current technologies from a conceptual

perspective

There are many technologies available today for

the development of the user views in database-driven

information systems. At the implementation level,

47

they have to comply with various technical

requirements, usually related to the compatibility with

some specific software platforms. However, from a

conceptual point of view, they all strive to provide

similar features for the automation of the

development process. Considering the facilities for

declarative development, there are two main

approaches followed by all these technologies.

The first approach is related to the attempt to

generate the user view metadata (i.e., the presentation

level data structures) from the conceptual schema of

the community view. Thus, the entities from the

database level are (automatically) transformed in data

collections specific to a particular development

technology. The tools employed for this task are

called object-relational mappers [16] [17] [18] [19],

and their main purpose is to synchronize the metadata

of the community view with the metadata of the user

view.

In many cases, the semantic complexity of the

community data, which have to integrate a large

number of user views, requires a high level of

generalization for the data entities of the database.

Consequently, the transformations/mappings between

the database entities and the data structures of the

user views will have to incorporate the whole

semantic complexity of the generalization/

specialization process. For this reason, the automation

facilities provided for simple one-to-one mappings

cannot be used in systems with a higher level of

sematic complexity.

The second approach that facilitates the

declarative development of the information system is

represented by the usage of a data model as

theoretical support for the conceptual representation

of the user views. The typical example in this regard

is the ADO.NET Entity Framework [20] [21], which

implements a version of the entity-relationship model

at the application level. The main objectives of this

approach are:

 To minimize the impedance mismatch, based

on the natural match between the application

‘entities’ and the relational data structures;

 To raise the level of abstraction in application

design, through integrity constraints

(declarative) specification.

While the first objective is attained by native

metadata compatibility, the second objective is just

partially achieved, due to the fact that the Entity Data

Model comes with a limited set of integrity

constraints (like keys and relationships [21]),

conceived mostly to express static properties of

(persistent) data, but not as much appropriate for the

specification of all the dynamic aspects related to data

presentation.

Our Presentation Model follows the same

objectives, but it is more limited in scope (the logical

specification of the presentation level) and introduces

a set of (presentation specific) integrity constraints, as

key ingredients for the declarative specification of the

most common presentation rules.

An important aspect which has to be emphasized,

related to the introduction of a formal data model at

the presentation level of the system, is the fact that it

usually enables graphical representations, like those

expressed by the entity-relationship diagrams used in

database design. This can bring multiple advantages

related to the computer aided design of the system,

and, not at least, can shift the programmer’s mindset

from “code writing” to “system design”.

3. Data Structures and Logical Operators

The presentation model defines a unique,

essential, data constructor: the “array of tuples” [7].

The formal definition of the array is based in the

mathematical formalism introduced by Bert de Brock

and Frans Remmen [22] [23], and described by Lex

de Haan and Toon Koppelaars [24].

In terms of the considered mathematical

formalism, the array is defined as follows [15].

If T is considered to be a table on the set H, then:

”AR is an ARRAY”  AR = (current;T) 

‘seq_no’H 

(tT: t(seq_no)ℕ\{0} 

 t(seq_no)  T) 

(t1, t2T: t1t2 

 t1(seq_no)  t2(seq_no)) 

(T  current{t(seq_no) | tT}) 

(T= current=0).

Since formal definition the array is based on the

formal specification of a table (i.e. relation), the

presentation model can employ all the operators

contained by the relational algebra. Besides those

classical operators, a set of array operators are needed

[15]:

 Cardinality (a)

 The Extract Attribute Value operator

(get_att_val)

 The Extract Current Tuple operator

(get_tuple)

 The Get Cursor operator (get_current)

 The Set Cursor operator (set_current)

 The Array to Table conversion operator

(A2T)

 The Table to Array conversion operator

(T2A)

 The Tuple Insert operator (insert_tuple)

 The (Current) Tuple Update operator

(update_tuple)

 The (Current) Tuple Delete operator

(delete_tuple)

 Next()

 Prior()

 First()

 Last()

It has to be said that the last four operators, named

also navigation operators, are just shortcuts for some

expressions involving the operators get_current()

and/or set_current():

48

next(AR) := set_current(AR, get_current(AR)+1),

 if get_current(AR)a(AR);

 := AR, otherwise.

prior(AR) := set_current(AR, get_current(AR)-1),

 if get_current(AR)>1;

 := AR, otherwise.

first(AR) := set_current(AR, 1), if 2(AR)  ;

 := AR, otherwise.

last(AR) := set_current(AR, a(AR)).

4. Integrity Constraints

The user view skeleton is formally defined

like a set-valued function.

Definition: ”UV_S : AR  (AT) is a user

view skeleton” 

”AR is the set of the array structure names

contained in the user view” 

”AT is the set of the attribute names of the

arrays contained in AR” 

/* array-specific requirement */

(ARiAR: seq_noUV_S(ARi)).

The characterization of an array structure is

formally defined like a set-valued function.

Definition: ”chr_ARi : UV_S(ARi)  (D) is

a characterization for the array structure ARi” 

”D is the set of all the possible values of the

attributes contained in AT” 

/* array-specific requirement */

(chr_ARi(seq_no)  ℕ\{0}).

Note: every element of the function chr_ARi,

i.e., every attribute-domain pair, represents an

attribute constraint, or an a priori constraint.

For every array structure, it is defined a tuple

universe, as the set of all the admissible tuples for the

given array structure.

tup_ARi := { t | t(chr_ARi) 

 P1(t)  P2(t)  …  Pn(t) },

where:

Pi(t) – represent tuple predicates, or tuple

constraints.

For every array structure, it is defined a table

universe, as the set of all the admissible tables for the

second coordinate of the array with the given array

structure.

tab_ARi := { TAB | TAB(tup_ARi) 

 /* array-specific requirement */

 (tTAB: t(seq_no)  T) 

 (t1, t2T: t1t2 

 t1(seq_no)  t2(seq_no)) 

 /* user defined constraints */

P1(TAB)  P2(TAB)  … 

Pn(TAB) },

where:

Pi(TAB) – represent table predicates, or table

constraints.

For every array structure, it is defined an array

universe, as the set of all the admissible arrays for the

given array structure.

arr_ARi := { ARR | ARR ℕ x tab_ARi 

 /* array-specific requirement */

 (2(ARR) 

 1(ARR){t(seq_no) | t2(ARR)}) 

 (2(ARR)=  1(ARR)=0) }.

The user view characterization is formally

defined as a set valued function:

UV_CHR : AR  (arr_AR1  arr_AR2  …

  arr_ARn),

where:

UV_CHR(ARi) = arr_ARi,

i: 1 i n  ARiAR.

The user view universe is defined as the set of

all admissible states of the user view, as follows.

UV_U := { uvs | uvs(UV_CHR) 

 P1(uvs)  P2(uvs)  …  Pn(uvs) },

where:

Pi(uvs) – represent user view predicates, or

user view constraints.

The state transition universe of the user view

has the following formal definition:

ST_UV_U := { (uvs1;uvs2) |

 uvs1,uvs2UV_U 

 P1(uvs1, uvs2) 

 P2(uvs1, uvs2)  … 

 Pn(uvs1, uvs2) },

where:

Pi(uvs1, uvs2) – represent user view state

transition predicates, or user view state transition

constraints.

All the integrity constraints defined so far are

defined as close as possible from the corresponding

database definitions. The part of the system which

doesn’t have yet a formal specification is represented

by the transformations/mappings between the

integrated community view (i.e., the database) and the

considered user view of the system.

The presentation model formally defines them

as part of two State Transition Universes of the

System:

 The Update Transitions Universe of the

System (ST_System_Update_U);

 The Refresh Transitions Universe of the

System (ST_System_Refresh_U).

The first is meant to specify the UV DB

transformations; the second is meant to specify the

DB  UV transformations. Any transaction initiated

by the end user at the user view level should be

accepted if and only if all the integrity constraints

specified as part of:

 The User View Universe (UV_U);

 The State Transition Universe of the User

View (ST_UV_U);

 The Database Universe (DB_U);

 The State Transition Universe of the

Database (ST_DB_U);

 The Update Transitions Universe of the

System (ST_System_Update_U);

 The Refresh Transitions Universe of the

System (ST_System_Refresh_U);

49

are satisfied.

How all these integrity constraints will be

enforced is a matter of implementation and should be

automatically determined by the system.

The enforcement of the database constraints

(defined at the DB_U and ST_DB_U level) is outside

the scope of the presentation model.

The Update Transitions Universe is defined

based on a formal specification of a system state,

represented as an ordered pair, (dbs;uvs), whose first

element is a database state and the second, a user

view state.

ST_System_Update_U := {

((dbs1;uvs1);(dbs2;uvs2)) |

dbs1,dbs2DB_U  uvs1UV_U 

uvs2UV_U∗ 

(dbs1=dbs2  (dbs1;dbs2)ST_DB_U) 

P1((dbs1;uvs1), (dbs2;uvs2)) 

P2((dbs1;uvs1), (dbs2;uvs2))

 …  Pn((dbs1;uvs1), (dbs2;uvs2)) },

where:

Pi((dbs1;uvs1), (dbs2;uvs2)) – represent

system update predicates, or system update

constraints;

UV_U∗ has the same definition as UV_U, but

without the user defined tuple constraints and user

defined table constraints.

UV_U∗ := { uvs | uvs(UV_CHR∗) },

where:

UV_CHR∗(ARi) := arr_ARi
∗, ARiAR;

arr_ARi
∗ := { ARR | ARR ℕ x tab_ARi

∗ 

 /* array-specific requirements */

 (2(ARR) 

 1(ARR){t(seq_no) |

 t2(ARR)}) 

 (2(ARR)=  1(ARR)=0) };

tab_ARi
∗ := { TAB | TAB(tup_ARi

∗) 

 /* array-specific requirements */

 (tTAB: t(seq_no)  T) 

 (t1, t2T: t1t2 

 t1(seq_no)  t2(seq_no)) };

tup_ARi
∗ := { t | t(chr_ARi) }.

The Refresh Transitions Universe of the

System is formally defined as follows.

ST_System_Refresh_U := {

((dbs;uvs1);(dbs;uvs2)) |

dbsDB_U  uvs1UV_U∗  uvs2UV_U

 P1((dbs;uvs1), (dbs;uvs2))

 P2((dbs;uvs1), (dbs;uvs2))

 …  Pn((dbs;uvs1), (dbs;uvs2)) },

where:

Pi((dbs;uvs1), (dbs;uvs2)) – represent user

view refresh predicates, or user view refresh

constraints.

To ensure the consistency of the system

(DB+UV), some compensatory updates should be

performed. After their completion, the arrays of the

user view will take the values returned by the queries

specified in their corresponding refresh constraints

definition. The sequence in which those queries will

be (automatically) performed can be determined from

a dependency graph, automatically built, based on the

arguments declared at design time for the operator

get_att_val(), as part of the refresh constraints

specification. The dependency graph is directed and

should be acyclic. The fact that the dependency graph

is acyclic should be verified and enforced at design

time.

5. Conclusions

The presentation model is meant to be a logical

data model (like the relational model), appropriate

for the user interface specification. The model

provides support only for the category of user views

exposed to the end user, usually through graphical

user interfaces. However, it is orthogonal to the

graphical representation of data.

The model can’t be used for the logical

formulation of ad-hoc queries; for this, we usually

don’t need to ‘leave’ the relational model. Our model

is limited to the presentation function, where there is

no need for complex data manipulation capabilities

(which have a better support in a relational context, at

the database level). In this respect, the prescribed

operators of the model should be used, at design time,

only for integrity constraints specification.

The behavior expected at the user interface level

(e.g., data filtering, data ordering, master-detail

navigation, etc.) will be achieved only through

(automatic) integrity constraints enforcement. In this

respect, “compensatory updates” [2] (like the

CASCADE updates/deletes for the foreign keys, in

the relational model) should be used extensively.

 References

[1] ANSI/X3/SPARC Study Group on Data Base

Management Systems, "Interim Report 1975".

[2] C. J. Date (2003), An Introduction to Database

Systems (8th edition).: Addison-Wesley.

[3] Joost J. van Griethuysen (May 2009), "The

Orange Report ISO TR9007 (1982–1987) —

Part 2 ~ The Seven Very Fundamental
Principles," Business Rules Journal, vol. 10, no. 5.

[4] E. F. Codd (1970), "A relational model for large

shared data banks," Communications of the

ACM, vol. 13, no. 6, pp. 377-387.

[5] E.F. Codd (1979), "Extending the Database

Relational Model to Capture More Meaning,"

ACM Transactions on Database Systems

(TODS), vol. 4, no. 4, pp. 397-434.

[6] Edgar F. Codd (February 1980), "Data models in

database management," in The 1980 workshop

on data abstraction, databases and conceptual

modeling, New York.

[7] C. J. Date and Hugh Darwen (2000), Foundation

for Future Database Systems: The Third

Manifesto (2nd Edition).: Addison-Wesley.

50

[8] Debasish Ghosh (July 2011), "DSL for the

uninitiated," Communications of the ACM, vol.

54, no. 7, pp. 44-50.

[9] Rafael Z. Frantz (January 2009), "A DSL for

enterprise application integration," International

Journal of Computer Applications in

Technology, vol. 33, no. 4, pp. 257-263.

[10] Microsoft Corporation (2015, November)

Microsoft.Net. [Online].

http://www.microsoft.com/net

[11] Oracle (2015, November) Oracle ADF. [Online].

http://www.oracle.com/technetwork/developer-

tools/adf/overview/index.html

[12] Eclipse Foundation (2015, November) Eclipse.

[Online]. https://www.eclipse.org/

[13] C. J. Date (2000), What Not How: The Business

Rules Approach to Application Development.:

Addison-Wesley.

[14] Marius Muji (2013), "A Model for User

Interface Design in Database-Driven Information

Systems,"Scientific Bulletin of the Petru Maior

University of Targu Mures, vol. 10, no. 1, pp.

24-27.

[15] Marius Muji (2015), "Logical Operators for the

Data-oriented Design of the User Interfaces,"

Procedia Technology, vol. 19, pp. 810-815.

[16] Tse-Hsu Chen et al. (2014), "Detecting

Performance Anti-patterns for Applications

Developed using Object-Relational Mapping," in

International Conference on Software

Engineering, Hyderabad, India, pp. 1001-1012.

[17] Alexandre Torres, Renata Galante, and Marcelo

Pimenta (June 2014), "ENORM: An Essential

Notation for Object-Relational Mapping,"

SIGMOD Record, vol. 43, no. 2, pp. 23-28.

[18] Red Hat. (2011, November) Hibernate. [Online].

http://www.hibernate.org

[19] Apache Software Foundation (2011, November)

Apache Cayenne. [Online].

http://cayenne.apache.org/

[20] Atul Adya, Jose A. Blakeley, Sergey Melnik,

and S. Muralidhar (2007), "Anatomy of the

ADO.NET entity framework," in ACM SIGMOD

International Conference on Management of

Data, Beijing, China, pp. 877-888.

[21] José A. Blakeley, David Campbell, S.

Muralidhar, and Anil Nori (December 2006),

"The ADO.NET Entity Framework: Making the

Conceptual Level Real," SIGMOD Record, vol.

35, no. 4, pp. 32-39.

[22] Bert de Brock (1989), De Grondslagen van

Semantische Databases. The Nederlands:

Academic Service.

[23] Bert de Brock (1995), Foundations of Semantic

Databases.: Prentice Hall.

[24] Lex de Haan and Toon Koppelaars (2007),

Applied Mathemathics for Database

Professionals: Apress.

http://www.microsoft.com/net
http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html
https://www.eclipse.org/
http://www.hibernate.org/
http://cayenne.apache.org/

